Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 251: 104096, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308863

RESUMO

Many studies have investigated the migration and entrapment processes of source zones from dense non-aqueous phase liquid (DNAPL) contamination under different conditions. However, the characterization of occupying area by source zone (or source shape) in water-saturated aquifers is still rudimentarily considered. In this study, we demonstrated this issue (1) by providing a brief review of existing approaches for source shape consideration, (2) by proposing an approach with simple shape parameters based on the non-uniformity of source widths, and (3) by providing exemplary applications of our proposed approach on shapes already published in previous research works. Our literature review suggested that the source zone in mathematical approaches is generally characterized as simple geometrical shapes (arbitrary lines or rectangles) or system-defined parameters that contrast to complex and discontinuous shapes observed in the real world. But the characterization of such complex shapes is still not possible with acceptable efforts. Therefore, we proposed an approach to parameterize the source shape by considering the variation of width and midpoints over the depth of the entire source zone and formulate four parameters based on population statistics (mean, standard deviation). To illustrate the suitability of our approach, we applied it to the results of lab experiments, and by analyzing these complex shapes, we highlighted the potential for improving the characterization techniques of non-uniformity of the source zones.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Modelos Teóricos
2.
J Hazard Mater ; 375: 233-240, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31075551

RESUMO

Dense non-aqueous phase liquids, i.e., DNAPLs and the evolving contaminant plumes in aquifers provide significant potential to pose hazards affecting both environment and human health. Therefore, a proper assessment of contaminant spreading within the subsurface is critical. This includes a sufficient characterization of governing parameters describing both the subsurface and the contaminant itself. Thereby, knowledge on the contaminant source zone and especially the source zone geometry, i.e., SZG is critically required, yet very uncertain. This study identifies current limitations and open research questions in the formation and shape determination of source zone geometry, as well as its relevance for contaminant plumes. Our literature review reveals that existing characterization methods are subject to data interpretation uncertainties, while the application of these methods on field scale is limited by technical demands and accompanied efforts. In a next step, methods to implement increased source zone information into calculation methods are discussed. By means of an exemplary application of selected assessment tools, i.e., plume response models, results clearly proof the relevance of SZGs for site assessment. However, existing plume response models consider over-simplified geometries that may compromise their suitability. Our findings identify the demand for improved characterization of complex SZGs and the need to better evaluate the dependency of DNAPL migration on system properties and external influences. With emphasized knowledge on the most relevant SZG features, the delineation of "effective" SZGs allowing for straightforward implementation into plume response models and an adaption of the latter to incorporate more information on SZGs should be possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...